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Abstract. Acoustical-phonon-assisted resonant magneto-tunnelling in a double-barrier het-
erostructure has been considered. The calculations have been carried out within the coherent
tunnelling model where the tunnelling current is related to the intra-well electron Green func-
tion. The magneto-tunnelling device is shown to be a convenient tool to study electron–phonon
interaction since the effective coupling factor increases with increasing magnetic field. Our
numerical calculations as well as analytical results for several limiting cases demonstrate that
both dc and differential conductance profiles are sensitive to the presence of non-equilibrium
phonons, as well as to their frequency distribution. In particular, we believe that our results can
be useful for detection and spectroscopy of non-equilibrium acoustical phonons.

Semiconductor double-barrier resonant tunnelling structures (DBRTSs) have been
extensively studied since their initiation by Tsu and Esaki [1] and first observation of
negative differential resistance by Sollneret al [2]. Many important characteristics of
DBRTSs have been analysed, in particular dc properties, phonon-assisted tunnelling, and
time dependent processes (for a review see e.g. [3]). An interesting feature of the various
structures isinelastic resonant tunnelling due to the coupling of tunnelling electrons to
phonons. This effect provides a way to investigate electron and phonon modes, as well as
electron–phonon interaction in such structures.

Earlier work on the phonon-assisted tunnelling was mainly focused on coupling to LO
phonons [4–11]. Acoustical-phonon-assisted resonant tunnelling in double- [12] and triple-
[13] barrier structures has been discussed within the sequential tunnelling model.

In this work, we study acoustical-phonon-assisted resonant magneto-tunnelling
theoretically using the coherent tunnelling model. The initial motivation is provided by
the experiments of Oualiet al [14], who observed inelastic tunnelling induced by non-
equilibrium acoustical phonons. In the above experiment, phonon replicas appearing in dc
current–voltage curves are interpreted as resonant tunnelling via impurity levels in the
quantum well assisted by non-equilibrium acoustical phonons. Here we focus on the
magnetic-tunnelling in a DBRTS in a situation when a strong magnetic field is applied
parallel to the tunnelling current (see figure 1). In such a configuration the tunnelling
occurs via intra-well Landau levels, theI–V -curves being sensitive to the modification of
the electronic wavefunctions and the energies by the magnetic field. As a result, magnetic
field appears to be an important tool for sample characterization.

The main feature of the configuration in question,B‖I, is that the tunnelling problem
is essentially one-dimensional. As a result, phonon-assisted resonant tunnelling manifests
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Figure 1. A schematic illustration of the DBRTS with the direct and inelastic resonant tunnelling
processes.

itself in a clearer way which, in its turn, simplifies the problem of frequency-resolved
phonon detection. In particular, one avoids the so-called electron recoil effect [15] tending
to suppress and smear out the phonon replicas in the dc. Finally, it appears that the effective
electron–phonon coupling increases with increasing magnetic field.

We consider the experimentally most extensively studied GaAs–AlGaAs heterostruc-
tures, having in mind for estimates a GaAs+–Al0.3Ga0.7As–GaAs–Al0.3Ga0.7As–GaAs+

DBRTS. In this case the barrier height is about 300 meV, and for thez-direction elec-
tron motion within the well one can assume that only one quasi-bound state with energy
ε0 exists. The zero reference energy is set to the bottom of the conduction band of the
quantum well, and so the conduction band minimum of the emitter is in the symmetric
case raised toeV/2 by the biasV , while the collector band edge is lowered to−eV/2.
Under the magnetic fieldB‖I‖z, the quasi-bound energy levelε0 splits into a series of
discrete Landau levelsε0 + (n + 1

2)h̄ωc, whereωc = eB/m∗ is the cyclotron frequency.
The electronic energy levels in the leads, on the other hand, form sets of Landau bands
eV/2 + εz(ke,z) + (ne + 1

2)h̄ωc and −eV/2 + εz(kc,z) + (nc + 1
2)h̄ωc, respectively, where

εz(kz) = h̄2k2
z /2m∗ is the kinetic energy along the tunnelling direction. Here, the effective

masses in the well and in the leads are assumed to be equal.
The quantum well electron wavefunction can be expressed as a product of a quasi-bound

stateχ(z) multiplied by the wavefunction corresponding to the in-plane(x–y) motion.
Under the LandauA = (0, Bx, 0) the wavefunctions can thus be specified by the set of
quantum numbersα = (n, ky) as

φα(r) = (1/
√

Ly) exp(ikyy)ϕn(x + l2ky)χ(z)

with the corresponding energy levels (measured from the conduction band edge)

Eα = En = ε0 + h̄ωc(n + 1
2).

Hereϕn(x) denote harmonic oscillator eigenstates andl ≡ √
h̄/eB is the Landau magnetic

length.
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Similarly, electron states in the leads are specified by the quantum numbersβ =
(m, kj,y, kj,z), where j ≡ e (c) refers to emitter (collector) states, respectively. The
corresponding wavefunctions and energy levels under the biaseV are

φj,β(r) = (1/
√

LyLz) exp(ikj,zz + ikj,yy)ϕm(x + l2kj,y)

Ej,β = [(h̄kj,z)
2/2m∗] + h̄ωc(m + 1

2) + aj eV

where in the symmetric caseae = 1
2 andac = − 1

2.
Using this set of basic functions the model DBRTS is described with the Hamiltonian

H = He + Hph + He–ph.

The electronic part of this Hamiltonian is given by

He =
∑
j,β

Ej,βc
†
j,βcj,β +

∑
α

Eαc†
αcα +

∑
j,α,β

[Vj,βαc†
αcj,β + HC]

where the tunnel matrix elementsVj,βα have in principle to be calculated using the
eigenstates listed above according to Bardeen’s prescription [16]. In our model, we ignore
scattering due to interface roughness and impurities and the quantum numbersn andky are
thus conserved during the tunnelling process. Consequently, the tunnelling matrix elements
can be written

Vj,βα = δm,nδ(ky − kj,y)Vj,n(kj,y, kj,z). (1)

The phonon Hamiltonian is simply given by

Hph =
∑

q

h̄ωqb
†
qbq.

In the presence of an isotropic non-equilibrium acoustical phonon pulse, the total phonon
distribution functionN(h̄ωq) can be written

N(h̄ωq) = Neq(h̄ωq) + Nneq(h̄ωq)

whereNeq(h̄ωq) = [exp(h̄ωq/KBT )−1]−1 is the Planck distribution of equilibrium phonons,
while Nneq(ωq) is the occupation number of the non-equilibrium acoustical phonon pulse.
One might however equally well apply the formulae to calculate the effects of a more general
(possibly anisotropic) phonon distribution with the replacementN(h̄ωq) → Nq. We assume
the phonon distributions to have a peak situated below the Debye energy ¯hωD. Consequently,
the acoustical phonons under discussion have a linear dispersion law,ωq = s|q|.

In the regime of resonant tunnelling the electrons reside in the well for a long time.
Consequently, the electron–phonon interaction is most important inside the well [7]. The
electron–phonon interaction Hamiltonian can thus be expressed as [17]

He–ph =
∑

α,α1,q

Dαα1(q)(bq + b
†
−q)c

†
αq

cα

where

Dαα1(q) ≡ D

√
h̄q2

2ρV0ωq

∫
φ∗

α1
(r) eiq·r φα(r) dr (2)

D is the deformation potential, andρ is the mass density. We assume the magnetic field to
be strong enough(ωc � ωq) to avoid inter-Landau-level transitions. Thus, we furthermore
concentrate on the tunnelling via the lowest Landau level. In this caseα = (0, ky),
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α1 = (0, k1y = ky + qy) and the squared matrix elements,|Dαα1(q)|2, can be calculated
explicitly using the above quantum well wavefunctions. For a rectangular well

|Dαα1(q)|2n,n1=0 = 4πh̄D2

V0Lyρs

|q| sin2(qzd/2) exp[−(q‖l/2)2]

(qzd)2[(qzd/2π)2 − 1]2
δ(ky + qy − k1y) (3)

whereq‖ ≡
√

q2
x + q2

y .

According to the theory of coherent phonon-assisted resonant tunnelling [6, 7] the dc
can be expressed through the so-called transmission Green function, which is a two-particle
Green function with a proper arrangement of the incoming and outgoing quantum numbers
and energy variables. The original theory was derived for a 1D DBRTS within the wide-
band approximation. This derivation is in general insufficient for the 3D magneto-tunnelling
problem because of the strong energy dependence of the density of states in the latter case.
However the expression obtained in [6] can be easily generalized beyond the wide-band
approximation, arriving at

Idc = e

πh̄

∑
α,α1

∫
dε dε1Kαα1(ε, ε1)[fe(ε)γe(n, ε)γc(n1, ε1) − fc(ε)γc(n, ε)γe(n1, ε1)] (4)

where

Kαα1(ε, ε1) =
∫

dτ dt ds

2πh̄3 ei[(ε−ε1)τ+ε1t−εs]/h̄ 2(s)2(t)〈cα(τ − s)c†
α1

(τ )cα1(t)c
†
α(0)〉

is the energy domaintransmission Green function. Since both leads are assumed to be
in a state of local thermal equilibrium,fe(c)(ε) is simply the Fermi fuction of the emitter
(collector)

fj (ε) = [e(ε−Ef −aj eV )/kBT + 1]−1.

Finally, γe(c)(n, ε) is the escape rate from the quantum well Landau staten with the energy
ε to the emitter (collector). Usually, the energy distance between the resonance level in the
well and the tops of the barriers is much greater than the escape rate from the well,γ , in
which case the tunnelling matrix elements (1) can be considered as smooth functions of the
energy in comparison with the energy dependence of the density of states in the leads,

gj (n, ε) ≡
∑
kj,z

δ(ε − Ej,β).

Thus the escape ratesγj are expressed asγj (n, ε) = 2π |Vj |2gj (n, ε), and in the case of a
3D dissipation-free emitter

γj (α, ε) = ϒjθ(ε − aj eV + h̄ωc(n + 1
2))√

ε − aj eV + h̄ωc(n + 1
2)

whereϒj is a constant characterizing the tunnelling strength.
To lowest order in the electron–phonon coupling, the transmission Green function is

given by

Kαα1(ε, ε1) = |GR(n, ε)|2
{
δα,α1δ(ε − ε1)

+ 1

2π

∑
q

|Dαα1(q)|2|GR(n1, ε1)|2[1 + N(ε − ε1)]B(q, ε − ε1)

}
(5)

whereN(ε) is the actual phonon distribution function,

B(q, ε) = −2FDR(q, ε) = 2π [δ(ε − h̄ωq) − δ(ε + h̄ωq)]
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is the phonon spectral function and

GR(n, ε) = 1/[ε − En + iγ (n, ε)/2 − 6R(n, ε)]

is the quantum well retarded electron Green function broadened by tunnelling to the leads
by the total escape rateγ (n, ε) = γe(n, ε) + γc(n, ε) and dressed by the phonon coupling
self-energy

6R(n, ε) =
∑
q,α1

|Dαα1(q)|2
[

1 + N(h̄ωq)

ε − h̄ωq − En1 + iγ (n1, ε − h̄ωq)/2

+ N(h̄ωq)

ε + h̄ωq − En1 + iγ (n1, ε + h̄ωq)/2

]
.

Note that the self-energy and thus the dressed Green function depend on the quantum number
n only (not onky).

For the problem of interest, inter-level scattering is ignored and the sum overky , α1

and theε1 integral appearing in (4) can easily be performed analytically. While doing this,
we assumeε0 + h̄ωc(n + 1

2) − h̄ωq − EF � kBT andeV > 0 in which case only the first
term in (4) contributes, so we arrive at

Idc = egB

πh̄

∑
n

∫
dε fe(ε)γe(n, ε)|GR(n, ε)|2

{
γc(n, ε)

+
∫ ∞

0
dqz dq‖ f (n, qz, q‖)[(N(h̄ωq) + 1)γc(n, ε − h̄ωq)|GR(n, ε − h̄ωq)|2

+N(h̄ωq)γc(n, ε + h̄ωq)|GR(n, ε + h̄ωq)|2]

}
. (6)

Heref (n, qz, q‖) is the electron–phonon coupling factor

f (qz, q‖, n) ≡ LyV0q‖
4π3

∫
dk1y |Dαα1(q)|2. (7)

Since f (qz, q‖, n), GR(n, ε) and γe(n, ε) are all independent of the wave factorky ,
the correspondingky summation in (4) results only in a magnetic degeneracy factor
gB = LxLy/2πl2.

An ‘effective electron–phonon coupling factor’,

g2
eff ≡

∫ ∞

0
dqz dq‖ f (0, qz, q‖)

can be defined in the reasonable limitl � d (corresponding toq‖ � qz). For n = 0 it can
be written as

g2
eff ∼ h̄D2

π2ρsl2d2

∫ ∞

0
dQ‖ dQz

sin2(Qz/2)QzQ‖ exp(−(Q‖/2)2)

Q2
z [(Qz/2π)2 − 1]2

where the new dimensionless variablesQz ≡ qzd andQ‖ ≡ q‖l have been introduced. The
integral does not depend ond or l. Consequently,g2

eff ∝ B which encourages our use of
a strong magnetic field to enhance the weak acoustical phonon manifestations in the dc.
Similarly, in the opposite limitl � d, we arrive atg2

eff ∝ B3/2.
Figure 2 shows the results in the case of the experimentally reasonable temperature

T = 4.2 K in the leads. Here we assume that the non-equilibrium phonons also have a
Planck distribution characterized by the effective temperatureTeff = 30 K. We assumed
D = 12 eV [18], andh̄ωc = 30 meV, that corresponds toB ≈ 16 T. The Fermi
level can be adjusted by the variation of impurity concentration in the leads. With
the choiceEF = 30 meV < 3

2h̄ωc, we ensure that only the lowest Landau channel
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Figure 2. A static I–V -curve for a DBRTS with device parametersϒe = ϒc = 0.65 (meV)3/2,
h̄ωc = 30 meV,ε0 = 35 meV,EF = 30 meV,d = 100 Å, s = 5000 m s−1, ρ = 5.3 g cm−3

and D = 12 eV. The curves obtained from equation (6) show results forT = 4.2 K in the
absence of non-equilibrium phonons (dotted line) and in the presence of the non-equilibrium
phonon pulse having a Planck distribution withTeff = 30 K (solid line).

contributes. For the tunnelling strength, the symmetric and experimentally reasonable value
ϒe = ϒc = 0.65 (meV)3/2 was chosen. As shown by the arrows in the figure, phonon
absorption (anti-Stokes) and phonon-stimulated emission (Stokes) replicas appear in the
I–V -curve and are present at each side of both the rising and falling regions of the curve.

Assuming the temperature in the leads to be nearly unaffected by the non-equilibrium
acoustical phonon pulse, we might concentrate on the rising region which has a couple of
advantages due to the fact that the escape rates are smooth functions of energy. First, our
formulae are simplified using the approximation

γj (n, ε ± h̄ωq) ≈ γj (n, ε) (8)

which is justified provided ¯hωq ∼ kBTeff � EF . Second, in regions where the escape
rates change abruptly, the charge redistribution effects are important and, in consequence,
bistability of the I–V -curve may appear [4, 19]. Staying in the risingI–V -curve region
where the escape rates are smooth functions of energy is thus an advantage if we want to
avoid those effects. Within the approximation (8), equation (6) can be written as

Idc = egB

πh̄

∑
n

∫
dε fe(ε)

γe(n, ε)γc(n, ε)

γe(n, ε) + γc(n, ε)
A(n, ε) (9)

whereA(n, ε) ≡ 2=GR(n, ε) is the spectral function of the quantum well electrons.
Figure 3(a) shows the dc in the rising-current region in the presence of a non-equilibrium

acoustical phonon pulse when its background current is subtracted:

1Idc(Nneq) ≡ Idc(Nneq) − Idc(0).
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Figure 3. (a) The phonon-sensitive part of the current1Idc(Nneq) and (b) its voltage derivative
∂ 1Idc/∂(eV ) for a DBRTS with parameters as in figure 2. The phonon-insensitive background
is subtracted. The curves show results for non-equilibrium acoustical phonon pulses with
different frequency distributions: a Planck distribution withTeff = 15 K (curve 1) and 8 K
(curve 2) and a Gaussian distribution centred at ¯hω0 = 2.5 meV (curve 3). The structure on the
left tails is due to phonon absorption while the right tails correspond to phonon emission.

The calculation was performed with the same device parameters and magnetic field as in
figure 2. Two different Planck phonon distributions corresponding toTeff = 8 and 15 K
were considered, as well a Gaussian distribution centred near the frequencyω0 (referred to
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as ‘monochromatic’),

Nneq(h̄ωq) = N0 exp

[
−

(
ωq − ω0

δω

)2]
.

In the calculations, we usedN0 = 200, h̄ω0 = 2.5 meV andh̄δω = 0.1 meV. Also,
the differential conductance d1Idc/d(eV ) has been plotted since it is closely related to the
spectrum of the acoustical phonons (see the later analysis). The shape of the Stokes and anti-
Stokes peaks in the dc and differential conductance curves clearly reflects the corresponding
profile and strength of the frequency distribution of the non-equilibrium phonon pulse. We
believe that a resonant double-barrier magneto-tunnelling structure can serve as a tool for a
measurement of the latter.

Assuming thick barriers whereγ � h̄ωq, the analytical analysis can be continued. In
this case, to the lowest order in the electron–phonon interaction, the quantum well spectral
function is approximated as a sum of threeδ-functions with proper weight corresponding
to the main peak, emission replica and absorption replica, respectively.

A(n, ε) ≈ 2π{Zm[n, N(h̄ωq)]δ(ε − En) + Ze[n, N(h̄ωq)]δ(ε − En − h̄ωq)

+Za[n, N(h̄ωq)]δ(ε − En + h̄ωq)} (10)

whereZm, Ze andZa are the corresponding weight factors and are functionals ofN(h̄ωq):

Zm[n, N(h̄ωq)] ≈ 1 −
∫

dqz dq‖ f (n, qz, q‖)[1 + 2N(h̄ωq)]/(h̄ωq)
2

Ze[n, N(h̄ωq)] ≈
∫

dqz dq‖ f (n, qz, q‖)[1 + N(h̄ωq)]/(h̄ωq)
2

Za[n, N(h̄ωq)] ≈
∫

dqz dq‖ f (n, qz, q‖)N(h̄ωq)/(h̄ωq)
2.

With the substitution of (10) into (9), for the lowest Landau level, the dc can be expressed
as

1Idc(eV, Nneq) = 2egB

h̄

γe(eV )γc(eV )

γ (eV )

∫
dqz dq‖

f (0, qz, q‖)Nneq(h̄ωq)

(h̄ωq)2
[fe(E0 − h̄ωq)

+fe(E0 + h̄ωq) − 2fe(E0)] (11)

where1Idc andγj (γj (0, E0) → γj (eV )) have now been written with the argumenteV to
emphasize their voltage dependence. In the particular limit of long phonon wavelengths,
max(qzd, Q‖l) � 1, the phonon coupling factor is dramatically simplified as

f (0, qz, q‖) ∼ D2h̄

4π2ρs
|q|q‖.

In the case of a Planck phonon distribution the above condition corresponds tokBTeff �
2h̄s/max(l, d) and for a typical device with max(l, d) ∼ 100 Å it readsTeff � 10 K.

Changing to polar coordinatesqz → |q| sin(θ), q‖ → |q| cos(θ), and to the new variable
ε ≡ h̄s|q|, yields

1Idc(eV, Nneq) = egBD2

2π2ρh̄4s5

γeγc

γ

∫
dε εNneq(ε)[fe(E0 − ε) + fe(E0 + ε) − 2fe(E0)]

(12)

where γe(c) is dependent oneV . Note that, in the discussed limit of long phonon
wavelengths, the ratio1Idc(Nneq)/Idc(0) is independent of the magnetic field, contrary
to what one could naively expect from theB-dependence of the ‘effective coupling factor’.
The reason is that theq dependence of the integrand is in this limit mainly governed by
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the occupation factorN(ωq) (which is independent ofB) and not by the electron–phonon
coupling factorf (n, qz, q‖).

Finally, we concentrate on the phonon absorption process responsible for the1I–V

structure in the voltage regimeE0 − EF − eV/2 > 0. Within this region of interest, the
escape rates are nearly constant, and at zero temperature the differentiation of the Fermi
functions with respect toeV just appears as delta functions. Thus the integral in (9) is easily
performed and we arrive at a simple relation between the phonon distribution function and
the differential conductance

Nneq(E0 − EF − eV/2) = 2π2ρh̄4s5

eD2gB

γ

γeγe

1

E0 − EF − eV/2

∂[1Idc(eV )]

∂(eV )
.

In the above considerations, we have concentrated on the rising-current region to take
advantage of the smooth escape rates. However, for different reasons one could want to stay
away from this region. Indeed, in that region the current structure is governed by an interplay
between the resonant level in the well and the Fermi edge of the emitter, and a smearing
of the Fermi function is important. The non-equilibrium acoustical phonon pulse could
possibly heat the leads during the measurements, and so the smearing of Fermi functions
would disturb the results. Alternatively, maybe we want to study also theequilibrium
phonons with a focus on thetemperturedependence of the Stokes and anti-Stokes peaks.

The smearing effects in the device considered so far can be avoided by a study of the
falling-dc region. For this purpose it seems however better to use a 2D emitter device where
the structure of phonon-assisted tunnelling is more pronounced. In this case the resonant
tunnelling current is determined by the interplay between the resonant Landau level in the
quantum well and the corresponding Landau level in the emitter. It is important that the
latter can be kept at a sufficient distance from the Fermi edge. We should however remember
that we are now in a region where the escape rates are no longer smooth functions of energy.
Consequently, we should be aware of charge redistribution effects responsible for bistability
in the I–V curves.

Figure 4 shows a calculation with a semi-elliptic density-of-states profile of the 2D
emitter [20]

γe(n, ε) = ϒe

4h̄√
2m∗Lezν

√
1 −

(
ε − Ee,n

ν

)2

whereEe,n = eV/2+ωc(n+ 1
2)+εe, εe is the emitter quasi-bound level andLex is the width

of the 2D emitter. The broadeningν of the electronic states in the lead depends on the
magnetic field and is given by the expressionν ∼

√
2h̄2eωc/πm∗µ, whereµ is the mobility

of the 2DEG. In our example,µ ∼ 106 cm2 V−1 s−1 and ath̄ωc = 30 meV we obtain
ν ∼ 0.6 meV. The calculation shows results for a Planck phonon distributionN(h̄ωq) for
two different temperatures as calculated from (6). In the case of non-equilibrium phonons,
the calculated1Idc(T ) ≡ Idc(T ) − Idc(0) corresponds to what we earlier denoted as
1Idc(Nneq) with the replacementTeff → T . In the case of equilibrium phonons,T denotes
the real temperature and so we have to compare dc profiles at different temperatures to
extract the information we want.

It is obvious that our device can also be used for phonon generation in addition to the
phonon detection studied so far. We assume that every electron taking part in the inelastic
spontaneous emission transport emits one phonon with a frequency distribution governed by
f (n, qz, q‖). As a result, the generation rateR can be determined asR = Ise/e, whereIse/e

is the emission contribution to the tunnelling current at a given voltageV . The phonon
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Figure 4. 1Idc(T ) for a symmetric 2D emitter DBRTS withϒe = ϒc = 0.65 (meV)3/2,
h̄ωc = 30 meV,ε0 = 35 meV,EF = 30 meV εe = 5 meV andν = 0.6 meV. The acoustical
phonons have a Planck distribution,T = 15 K (curve 1) and 8 K (curve 2). The structure on
the left tails is due to phonon absorption while the right tails correspond to phonon emission.

generation rate is thus given by equation (6) as

R(eV ) = gB

πh̄

∑
n

∫
dε fe(ε)γe(n, ε)|GR(n, ε)|2

×
∫ ∞

0
dqz dq‖ f (n, qz, q‖)γc(n, ε − ωq)|GR(n, ε − ωq)|2.

The resulting curve calculated for a 3D emitter device has a shape similar to that in figure 2.
In conclusion, we have calculated the change in resonant tunnelling current produced

by acoustical phonons within the coherent tunnelling model. A magnetic field applied
parallel to the current is shown to enhance the effective electron–phonon coupling and
consequently the strength of the phonon replicas increases. Our calculations clearly show
how the frequency distribution of the phonon pulse is reflected in both theI–V -curve and
differential conductance. The resonant magneto-tunnelling device seems thus to be a good
candidate to be employed in the spectroscopy of non-equilibrium acoustical phonons.
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